Share this post on:

The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J. Exp. Biol. 209, 2472479 (2006). 32. Maeda, H. et al. Fluorescent probes for hydrogen peroxide primarily based on a nonoxidative mechanism. Angew. Chem. Int. Ed Engl. 43, 2389391 (2004). 33. Niethammer, P., Grabher, C., Appear, A. T. Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 99699 (2009). 34. Flores, M. V. et al. Dual oxidase within the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem. Biophys. Res. Commun. 400, 16468 (2010). 35. Ha, E. M., Oh, C. T., Bae, Y. S. Lee, W. J. A direct function for dual oxidase in Drosophila gut immunity. Science 310, 84750 (2005). 36. Rokutan, K. et al. Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin. Immunopathol. 30, 31527 (2008). 37. Erikstein, B. S. et al. Cellular stress induced by resazurin leads to autophagy and cell death through production of reactive oxygen species and mitochondrial impairment. J. Cell Biochem. 111, 57484 (2010). 38. Yan, B. et al. Il-1beta and Reactive Oxygen Species Differentially Regulate Neutrophil Directional Migration and Basal Random Motility in a Zebrafish Injury-Induced Inflammation Model. J. Immunol. (2014). 39. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Solutions three, 28186 (2006). 40. Field, H. A., Ober, E. A., Roeser, T. Stainier, D. Y. Formation on the digestive technique in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 27990 (2003). 41. Cocchiaro, J. L. Rawls, J. F. Microgavage of zebrafish larvae. J. Vis. Exp. e4434 (2013). 42. Goldsmith, J. R., Cocchiaro, J. L., Rawls, J. F. Jobin, C. Glafenine-induced intestinal injury in zebrafish is ameliorated by mu-opioid signaling by way of enhancement of Atf6-dependent cellular tension responses. Dis. Model. Mech. 6, 14659 (2013). 43. Brock, C. et al. Opioid-induced bowel dysfunction: pathophysiology and management. Drugs 72, 1847865 (2012). 44. Karnovsky, M. J. Roots, L. A “Direct-coloring” thiocholine approach for cholinesterases. J. Histochem. Cytochem. 12, 21921 (1964). 45. Behra, M. et al. Acetylcholinesterase is required for neuronal and muscular development within the zebrafish embryo. Nat. Neurosci.Sulfapyridine five, 11118 (2002).NLRP1, Human 46.PMID:22664133 Sarter, M., Parikh, V. Howe, W. M. Phasic acetylcholine release along with the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. ten, 38390 (2009). 47. Soreq, H. Seidman, S. Acetylcholinesterase–new roles for an old actor. Nat. Rev. Neurosci. two, 29402 (2001). 48. Kilbinger, H. Wessler, I. Inhibition by acetylcholine from the stimulation-evoked release of [3H]acetylcholine from the guinea-pig myenteric plexus. Neuroscience five, 1331340 (1980). 49. Ball, E. R. et al. Ultra-structural identification of interstitial cells of Cajal in the zebrafish Danio rerio. Cell Tissue Res. 349, 48391 (2012). 50. Seiler, C., Abrams, J. Pack, M. Characterization of zebrafish intestinal smooth muscle improvement using a novel sm22alpha-b promoter. Dev. Dyn. 239, 2806812 (2010). 51. Pietsch, J. et al. lessen encodes a zebrafish trap100 required for enteric nervous technique development. Improvement 133, 39506 (2006). 52. Westerfield, M. The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio) (Westerfield, M. [Eugene, OR] 1995). 53. Li, L., Jin, H., Xu, J., Shi, Y. Wen, Z. Irf8 reg.

Share this post on:

Author: Menin- MLL-menin